One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
$\left( {0,\frac{\pi }{2}} \right)$
$\left( { - \frac{\pi }{2},0} \right)$
$\left( { \frac{\pi }{2},\pi } \right)$
$\left( {\pi ,\frac{{3\pi }}{2}} \right)$
If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :
If $\sec x\cos 5x + 1 = 0$, where $0 < x < 2\pi $, then $x =$
If $sin^2x + sinx \,cosx -6cos^2x = 0$ and $-\frac{\pi}{2} < x < 0$, then the value of $cos2x$, is
The equation $\sqrt 3 \sin x + \cos x = 4$ has
The number of elements in the set $S =\left\{\theta \in[0,2 \pi]: 3 \cos ^4 \theta-5 \cos ^2 \theta-2 \sin ^2 \theta+2=0\right\}$ is $...........$.